BROOKS, C. D., SCHMID, F. R., BIUNDO, J., BLAU, S., GONZALEZ-ALCOVER, R., GOWANS, J. D. C. HURD, E., PARTRIDGE, R. E. H. & TARPLEY, E. L. (1970). *Rheumatol. Phys. Med. Suppl.*, 10, 48-63.

GLENN, E. M. & KOOYERS, W. M. (1966). Life Sci., 5, 619-628.

- KAISER, D. G. & GLENN, E. M. (1972). J. pharm. Sci., 61, 1908-1911.
- METZLER, C. M. (1970). Compilation of Symposia Papers, p. 380. APhA Academy of Pharmaceutical Sciences.

MORTON, D. M. & CHATFIELD, D. H. (1970). Biochem. Pharmac., 19, 473-481.

QUEVAUVILLER, A., CHALCHAT, M. A., BROUILHET, H. & DELBARRE, F. (1968). C. r. Seanc. Soc. Biol., 162, 618-621.

WHITEHOUSE, M. W. & BECK, F. J. (1973). Drug Metab. Disp., 1, 251-255.

ZAK, S. B., HONC, F. & LUKAS, G. (1972). Proc. 5th Int. Congr. Pharmacology, 259 (abst. 1549).

1-(Hexahydroazepin-1-yl)-3-*p*-carboxyphenylsulphonylurea — a metabolite of tolazamide in man

Tolazamide [1-(hexahydroazepin-1-yl)-3-*p*-tolylsulphonylurea, I] is a potent, orally-active hypoglycaemic drug. The present communication describes the identification of a major metabolite isolated from human urine.

A 24 h urine sample (695 ml) from a normal male subject following a 2 g oral dose of the drug was adjusted to pH 1 with concentrated HCl and extracted 5 times with equal volumes of methylene chloride. Combined extracts were concentrated to dryness and the residue triturated with chloroform followed by 0.1 N HCl. The insoluble fraction was twice recrystallized from 70% ethanol to yield a product (76 mg) m.p. $180-182^{\circ}$ (uncorrected).

Found: C, 49·4; H, 5·4; N, 12·5; O, 23·0; S, 9·3. Calculated for: $C_{14}H_{19}N_3O_5S$ C, 49·25; H, 5·6; N, 12·3; O, 23·4; S, 9·4.

Potentiometric titration in a 60% ethanol: dimethylformamide mixture give an equivalent weight of 178 (calculated :170.7) and indicated two acidic groups with pKa' 5.64 (characteristic of -COOH) and 7.37 (assigned to $-SO_2-NH-$; pKa' of I under the same conditions was 7.20).

The infrared spectrum showed the characteristic absorptions of I plus the following attributed to a -COOH group: 2660 and 2540 cm⁻¹, acidic-OH; 1420 and 1278 cm⁻¹, $-COO^-$; and 960 cm⁻¹, acidic -OH deformation.

The ultraviolet spectra in acidic and alkaline ethanol showed maxima at 235 ($\epsilon = 17,150$) and 232 ($\epsilon = 12,150$) nm, respectively. The absorption of the metabolite at longer wavelengths than I (maximum in acidic ethanol, 228 nm, $\epsilon = 14\,200$) is typical of an aromatic acid (Louis, Fajans & others, 1956).

From these results it is concluded that this metabolite of I is 1-(hexahydroazepin-1yl)-3-*p*-carboxyphenylsulphonylurea analogous to the major tolbutamide metabolite, 1-butyl-3-*p*-carboxyphenylsulphonylurea (Louis & others, 1956; Thomas & Ikeda, 1966).

Research Laboratories, The Upjohn Company, Kalamazoo, Michigan 49001, U.S.A. ARLINGTON A. FORIST RAY W. JUDY

January 2, 1974

REFERENCES

LOUIS, L. H., FAJANS, S. S., CONN, J. W., STRUCK, W. A., WRIGHT, J. B. & JOHNSON, J. L. (1956). J. Am. chem. Soc., 78, 5701. THOMAS, R. C. & IKEDA, G. J. (1966). J. medl Chem., 9, 507–510.